本文来源汽车自动驾驶技术
模型预测控制(MPC)是一种基于模型的控制方法,用于在满足多个约束的同时控制动态系统。MPC中使用的模型表示系统的动力学特性。该模型能够预测由控制变量的变化引起的系统状态的变化。优化器会确定一系列优化控制变量,这些变量在能够在满足约束的前提下最小化成本函数值。MPC中使用的模型通常很简单,并且出于减少计算量的考虑,常采用线性形式表示模型。通过当前状态测量的反馈,可以减弱模型误差所造成的影响(García等,1989)。
由于MPC能够明确考虑约束条件和次优性能(Falcone等,2007a,2007b,2007c;Shim等,2012),因此常使用MPC设计自动驾驶汽车的转向控制器。这些MPC中的模型大多基于车辆动力学模型,而没有考虑执行器的动力学特性。MPC的控制输出不是执行器层的信号(电压、电流等),而是高层级的信号(转向角、制动力等)。实际上,这类控制器的设计是在执行器控制器具有完美跟踪能力的前提下进行的(Kim等人,2014)。
(资料图片仅供参考)
针对大多数的驾驶员操纵,例如以规则速度行驶的车道变更和转弯操纵,不考虑执行器模型的控制器可以满足其控制精度,因为执行器的带宽足以覆盖常规操作所需的动作频率。然而,在某些操纵中,例如需要非常快速的转向动作的规避转向操纵(Keller等,2014),仅有简单的车辆动力学模型是不够的。在这种情况下,通常在常规操作中可忽略的模型误差或模型的缺失引起的影响将变得十分显著,或者如果在模型中未适当考虑扰动,扰动的数值将会过大,并导致对于扰动的抑制不足。
这项研究的目的是为转向控制器设计一种适用于规避转向操纵的MPC。为此,我们需要在MPC设计中同时考虑转向系统模型与车辆模型。该模型应提供有关不不可忽视干扰的信息,并通过监视执行器的性能极限来考虑执行器带宽。但是,为了保持较低的计算负荷,应使结构尽可能的简单。
为了代替人类驾驶员,配备有自动转向系统的自动驾驶汽车需要具备决策、控制、执行等方面的自动功能。在自动驾驶汽车中,转向系统负责执行转向操作。图1显示了自动转向控制功能的常用框架(Kim和Song,2002年)。在高层级控制器中确定所需的转向角,由电机控制器或ECU调节电机电流以跟踪所需的转向角。
目标改造车辆选择簧载质量为1370kg的常规D级轿车,例如Audi A4、BMW 3系列等。如图2所示,自动驾驶汽车中最常见的转向系统是电动助力转向系统(EPS)。EPS中的ECU提供了伺服控制,以在内外扰动下跟踪目标转向角。在ECU中设置了两个伺服控制器,分别为用于计算目标电流的转向角控制器、用于计算目标电压的电流控制器(Wei等人,2010)。两个控制器的控制分别来自于转向系统的机械惯性与轮胎的扰动转矩、电机线圈的电感与反电动势等。
对于转向系统而言,其能提供的最大角速度和最大角加速度取决于电机的最大扭矩和车辆操纵过程中来自轮胎的干扰扭矩。电机转矩与提供的电流成正比,而电流被电压限制动态饱和,对于常见的乘用车,该电压限制为12 V(Saifia等,2015)。来自轮胎的干扰扭矩则源自横向车辆操纵期间的轮胎侧向力,与轮胎侧偏角成函数关系。
如图3(a)所示,当典型的换道操作所需的转向角适中时,由于系统惯性而存在一些相位滞后,但角度控制器和电流控制器的跟踪性能也是可以接受的,也并未发生电压饱和问题(Li等;2011;Yoshida等,2008;Zaremba等,1998)。
但在转向要求过高时,即使轮胎滑移角处于很小的范围之内,也会出现违反电压饱和限制的情况。如图3(b)所示,当车辆执行规避转向操作时,转向角速度与角加速度远高于图3(a)中操作对应的数值。可以看到,高层控制器仍能够计算得到适当的目标转向角,但伺服控制器无法对其进行跟踪。可能的原因包括:
(1)转向角变化的更快,使得系统惯性引起的相位滞后不可忽略;
(2)规避转向操作时的扰动转矩远高于典型换道操作时的扰动转矩;
(3)对应目标转角的期望电压值高于12V,相位滞后的值无法通过12V电压得到充分的补偿。
因此在确定高层控制器以及参考模型时,应考虑上述三个因素。
系统的输入量为方向盘转角的角速度,扰动量为由目标轨迹确定的期望横摆角速度。输入量选择转角的角速度,是为了防止MPC方程中方向盘转角噪声过大。
转向系统由许多子系统构成,直接建模得到的模型复杂度很高,且对于控制器设计而言高逼真的转向系统模型是不必要的。因此可采用相对简单的二阶线性模型描述转向系统:
图5使用双移线操作进行转向系统模型识别的结果
扰动模型指轮胎的扰动转矩模型。轮胎的扰动转矩与轮胎的侧向力有关,而轮胎的侧向力与轮胎滑移角有关。滑移角较小时,侧向力与滑移角呈线性关系;滑移角较大时,该关系变为非线性。假设该线性关系可表示为:
该MPC中的优化问题由具有线性约束的线性系统表示,因此可转换为典型的二次规划问题。对于式(14)表示的离散系统,可给出对应的成本函数为式(14)
也可以给出系统的输出约束与输入约束如下:
对于转向系统模型MPC,其目标是最小化方向盘转角的跟踪误差,同时将电压保持在极限范围以内。
为了验证本文所提出的用于规避转向条件下跟踪控制的MPC,我们对其进行了仿真与实验测试。为了进行比较,我们设计了两个基于MPC的控制器,一个为仅基于车辆模型的常规MPC,另一个为基于车辆模型与转向系统模型的改进MPC。
使用CarSim对进行仿真验证,仿真车速为30km/h。图7(a)、图7(b)分别为常规MPC与改进MPC在规避转向操作下的仿真结果。可以看到,常规MPC可以计算出适当的期望转向角,但由于电压饱和,伺服控制器无法跟踪期望转向角。而改进MPC在考虑扰动与电压限制的情况下计算出了相应的期望转向角,使得伺服控制器能够成功对其实现跟踪。仿真结果表明,额外考虑转向系统模型的MPC具有比常规MPC更加精确的实际系统模型,并能够有效处理系统约束问题。
除了仿真验证,还进行了相应的实验验证。如图8所示,实验系统由标定车辆、摄像头、快速控制原型系统dSPACE等组成。对称布置的标记器附着在车辆的顶部,标记器跟踪算法提供了车辆的位置与航向角;摄像头获取的车辆信息与车辆的传感器信号则通过无线通信传输到dSPACE中。实验结果如图9(a)、图9(b)所示,实验中的标定车速为0.2m/s。可以看到,常规MPC为车辆提供了计算得到的期望转向角,但违反了电压限制,因此车辆无法遵循所需的路径行驶。而改进MPC控制的车辆在允许的电压范围内成功地跟踪了所需路径。试验结果表明,按照该比例缩放并标定的车辆,其转向系统的物理极限与电压约束得到了明确的处理,并验证了改进MPC的次优性能。
(a)
(b)
本文设计了一种用于自动驾驶汽车转向控制器的MPC,该MPC适用于转向操纵中的规避转向操纵。规避转向操纵需要进行非常快速的转向操作,而仅依靠简单的车辆动力学构建参考模型是不够的。因此,本文在MPC设计中同时考虑了转向系统模型与车辆模型。
本文对转向系统进行了建模,该模型可以在保持简单结构以减少计算负荷的同时,提供有关扰动、系统带宽和电压状态的信息。仿真和实验结果表明,在允许的电压范围内,该控制器能够很好地完成跟踪任务,并且在规避转向操作期间的表现优于仅基于车辆模型的常规MPC。
END
Copyright © 2015-2022 东方产业网版权所有 备案号:沪ICP备2020036824号-8 联系邮箱:562 66 29@qq.com